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Self and mutual interaction of electromagnetic waves in a 
magnetoplasma considering the dependence of electron 
density on electron temperature? 

B. K. SAWHNEY 
Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi, India 
M S .  receieed 13th Septebmer 1968, in revised form 25th April  1969 

Abstract. The author has obtained an expression for the change in electron density 
in a magnetoplasma arising due to the change in the electron temperature when two 
electromagnetic waves of frequency w1 and w2 propagate through it. This expression 
for the modified electron density is used to derive expressions for the current density 
due to the electric vectors of the two waves. The expressions thus obtained are 
substituted in the general wave equation; the solutions of the wave equation are used 
to investigate the non-linear self and mutual interaction of the two waves. Some 
numerical results have been presented in the form of tables to illustrate the dependence 
of the amplitudes of the waves, for both the processes of mutual and self interaction of 
the waves, on relevant parameters; these calculations h a ~ e  been carried out for a very 
particular case when the electron density is assumed to be governed by Saha’s equation 
corresponding to the electron temperature. These numerical calculations suggest that 
it is important to take account of the variation in the electron density (arising due to 
changes of ionization and de-ionization rates) caused by the waves propagating through 
a plasma. Using the theory developed in this paper, one can obtain the dependence of 
electron density on temperature from a study of the self and mutual interaction. 

1. Introduction 
It is well known that an electromagnetic wave propagating through a plasma changes the 

properties of the medium, which results in the well-known phenomena of self interaction 
and mutual interaction (e.g. Luxembourg effect) with other waves simultaneously passing 
through the plasma. These non-linear interaction phenomena occur because of the change 
in the density and the complex mobility of the electrons. The  change in the complex 
electron mobility (which depends on the electron collision frequency) has been incorporated 
in the analysis by many earlier workers, e.g. Ginzburg and Gurevich (1960) and Sodha and 
Palumbo (1963). In  their excellent review of the subject, Ginzburg and Gurevich (1960) 
have also pointed out the desirability of taking into account the change in the electron 
density due to the passage of the high-intensity electromagnetic waves ; this change in the 
electron density occurs because of the change in the electron temperature caused by the 
wave, 

In  this communication the author has analysed the non-linear interaction of electro- 
magnetic waves in a plasma initially in thermal equilibrium, SO that the electron temperature 
T, is equal to the gas temperature To. Because of the ohmic heating caused by the propaga- 
tion of an electromagnetic wave, the electron temperature changes, and hence the electron 
density also changes ; this happens because the ionization and de-ionization rates depend 
upon the electron temperature. Based on these and other (change in complex mobility) 
considerations, the author has also derived an expression for the current density in a magneto- 
plasma when two electromagnetic waves are propagating along the x direction. It is seen 
that the component of the current density, alternating with the frequency of either wave, 
depends upon the amplitude of both the electromagnetic waves and involves a term 
aNe/aTe which expresses the dependence of electron density on electron temperature, The 

t This work was partially supported by the Environmental Science Services Administration, U.S.,4. 
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above expression for the current density in a magnetoplasma has been substituted in the 
general wave equation and the resulting set of non-linear differential equations has been solved 
by the method of successive approximations. The differential equation for the propagation of 
each of the waves contains terms depending upon the amplitudes of the first wave and the 
second wave, thus illustrating the phenomena of self interaction and mutual interaction of 
the two waves. These solutions of the wave equation have been used to investigate both 
these phenomena. The  analysis has been applied to a very particular case when (following 
Kerrebrock 1964, and others in the field of non-equilibrium ionization) the electron 
density is governed by Saha's (1921) equation corresponding to the electron temperature, 
Some numerical calculations have been carried out, on an IBM 1620 computer, to investi- 
gate the dependence of the amplitude of the first wave on the relevant parameters of the 
medium for the processes of self and mutual interaction of the two waves. I t  is seen that, 
for a typical case, the contribution of taking into account the change in electron density 
amounts to about 207L of the non-linear part of the complex amplitude of the waves. 

2. Electron density in a magnetoplasma 
If one considers a uniform plasma subjected to an electric field of such a strength that 

the electron temperature T,  is only slightly greater than the gas temperature T o t ,  then the 
electron density Ne (at the temperature T,) may be expressed in terms of the electron density 
N o  (at the temperature To)  by a Taylor expansion of the form 

n;, = .v0 + i") (Te -To) .  
ZTe T ~ = T ~  

This change in electron density is caused by the change in ionization and de-ionization rates 
due to the change in the electron temperature when a wave propagates through the plasma. 

If a plasma is subjected to a magnetic field B along the x axis and two electromagnetic 
waves of frequencies w ,  and w 2 ,  i.e. 

E ,  = E,, exp(iw,t) + E2,  exp(iw2t) 
E,, = E,,, exp( iw,t) + Ezu exp( iw2t) (2) 

then this corresponds to the physical situation of two electromagnetic waves travelling along 
the direction of the external magnetic field. The energy balance equation of the magneto- 
plasma may be written as (Sodha 1965) 

J .  E 2mG 

Ne M 
- ((&mv2 - ZkTo)v > ( 3 )  

whereJ is the total current density, v(v)  is the electron collision frequency, m and A4 are the 
masses of the electron and the heavy particles respectively, v is the random velocity of the 
electron, K is Boltzmann's constant, G is a factor which gives the fractional energy 
change (taking inelastic collisions into account) and 1 is a constant to be determined. The  
left-hand side of the above equation represents the average power received by an electron 
from the field while the right-hand side gives the average energy lost by the electron per 
unit time by collisions. Knowing that the average energy lost by an electron owing to 
collisions is zero when the electron temperature T,  is equal to the gas temperature To, the 
constant 1 can be determined. Assuming that the electron collision frequency can be 
represented by 

v = azS (4) 
and that the electrons obey a Maxwellian distribution of velocities, the right-hand side of 
equation (3) can be evaluated. 

t This is true when {Me2Eoo2/6m2(v2 + w2)KTo} < 1 where the symbols have their usual meanings. 
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The complex mobility pli of an electron subjected to an electric field of frequency w 
along the direction of the electric field in a plasma, and the mobility pL in a perpendicular 
direction, are given by (Sodha and Palumbo 1963) 

and 

where e is the electronic charge and wB = (eB/mc) is the electron gyrofrequency. I t  may be 
remarked that equations (5) are non-linear in character; the non-linearity enters through 
averaging over a distribution which depends upon the electric vector. In  the present 
analysis the averaging process is carried out by assuming that the electrons satisfy a Max- 
wellian distribution of velocities corresponding to a temperature higher than that of the 
gas. In  most physical situations of interest in a plasma w + v, hence, knowing that 

and 

a solution of ( 3 )  would yield an expression for (Te-  T,)/T,. Using this solution for Te- To 
in equation (1)) we obtain the following expression for the electron density Ne for the case 
when the frequency w1 of the first wave equals the gyrofrequency of electrons: 

lve = +b{Pl(E,zE1,+ EJL) + L ~ ( E ~ , E ~ V  -E1,Rl.z) 
+ PZ(EZJ322,  + E2Y-Q + ~ 2 ( E 2 s ~ 2 ,  - ~ Z V & , ) } l  ( 7 )  

where 

1 

\ 
b = (&fez (5) ~ - -  

aTe Te =T,6m2k~oGT,No~(5 /2  + s/2) 
F( 5 /2 - s/2) 3 4/n.i 34v il7(5/2-s/2) 

P1 = -__ , L 1 = - -  
2v0 16w1 16w1 2v0 

where t takes the value 1 and 2 for the two waves. For a general case (when o1 # wB # 02> 
the form of equation (7) remains the same but the coefficients are given by the last two 
equations of (8). The  terms containing the time-dependent components of the electron 
temperature have not been considered in equation (7) because the electron density can not 
follow the instantaneous changes in the electron temperature at high frequencies. 
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3. Current density in a magnetoplasma 
The electric vector in a magnetoplasma (when the magnetic field acts along the x direc- 

tion) in the presence of two electromagentic waves propagating along the x direction, is 
given by equation (2 ) .  Using equations (5), (6), (7) and ( Z ) ,  one obtains the following 
expression for the component of the current density due to the wave of frequency w1 at 
its gyro-resonance (wl = w,) 

where a = (~~e2Eoo2/6m2kT,Gw,2) ,  E = E/E,,, E,, is an arbitrary field, w ,  is an arbitrary 
frequency, up2 = (4nN,e2/m) and 

where t = 1 , 2  for the two frequencies. For a general case (when w1 # w, # up) the form 
of equation (9) remains the same; the coefficients have the same values as given by equations 
(10) except that B1 is now obtained from the last equation of (10) and A l +  takes the value 

A similar expression for the component J2,+iJZy of the current density due to the 
second wave can be obtained by replacing w1 by wz,  and El,, Ely, by EZr,  E,, respectively 
in the above equations. The  expressions for J1,- iJ1, and JZi- iJ,, can be written down 
by replacing + i by - i in the corresponding expressions obtained above. 
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4. Propagation of the electromagnetic waves in a magnetoplasma 
Consider the x and y components of the general wave equation of electromagnetic 

waves in a neutral medium: multiplying the latter by + i and adding it to the former, one 
obtains the following equation for the propagation of the extraordinary mode of the wave 
travelling along the x direction 

which may be written in a dimensionless form 

by putting 6 = ( w , x / c )  where c is the velocity of light in vacuum. 
The  expression for the total current density in a magnetoplasma subjected to the 

electric vector of equation (2) can be written with the help of the results obtained in the last 
section. Substituting this expression in equation (13) and equating the time-dependent 
terms of the same frequency on both the sides, one obtains 

8’(qx + iEly) ctK, + 

- - (P1+)2(~lx+i~ly)+--  [D] 
a t 2  Eo0 

where [D] stands for the expression contained in the second bracket [ ] of (9), 
2 2  

4niul  

WO 

K,+ =- 

and 

An equation for the propagation of the extraordinary mode of the second wave can be 
similarly obtained by substituting the proper expression for the current density component 
from the last section. The  corresponding equations for the propagation of the ordinary 
components e x -  icy can be written down in a similar manner where p1 + is replaced by pl-. 
Because the wave equation for the first wave contains both the electric vector and current 
density, which in turn depends on its own amplitude and the amplitude of the second wave, 
its propagation is influenced by the wave itself and the second wave, and hence the processes 
of self and mutual interaction take place. 

These non-linear differential equations, like (14), can be solved by the method of 
successive approximation of the type used by earlier workers, namely, Epstein (1962), 
Sodha and Palumbo (1962). The constants of integration can be evaluated from the boun- 
dary conditions 

a t [ = O  (16) 1 E 1 x  = E l X O ,  

E 2 x  = E 2 x 0 ,  

€1, = E l y o  

€ 2 ,  - E2yO 
- 

and the radiation condition, i.e. that all the components of the electric vector vanish at e +  cc. 
5. Discussion 

We have taken the electron collision frequency U in equations ( 5 )  to correspond to 
elastic collisions only. This is a good approximation because, for cases of practical interest, 
the elastic collisions are much more frequent than the inelastic collisions. 
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Equations (10) illustrate that, all the coefficients (arising because of both fields) being 
directly proportional to the square of the plasma frequency up, the magnitudes of all the 
components of the current density increasc directly with the electron density. The  solu- 
tion of the non-linear differential wave equations (14) gives an expression for the amplitude of 
either of the waves, taking into account the dependence of Ne on Te. I t  is suggested, 
therefore, that a study of self and mutual interaction of the waves propagating through a 
plasma may provide a means to obtain the dependence of electron density on electron 
temperature. 

Let us apply the above analysis to a particular case when the electron density in a slightly 
ionized gas is given by §aha's equation corresponding to the electron temperature (Kerre- 
brock 1964) : 

U 
Are = C, Te3I4 expi  - -1 2k T,  (17) 

where U is the ionization potential, T,  is the electron temperature in OK and C, is a constant 
involving the number density of neutral atoms and other well-known constants. 

Using (17) in (l),  one obtains 

(18) 
U Te-To \ Lv = $7 I +  -+-- --__ . 

e '( i: ZkTJ[  To 

This equation suggests that the above analysis is applicable to this particular case when 
(2~f'e/2Te),~=T, is replaced by { ( N o /  T,)(3 /4 + Lr/2kT0)). 

T o  be able to appreciate the effect of the above non-linearity, we consider a case in 
which only the extraordinary modes of the two waves are propagating and the ordinary 
modes are absent, i.e. 

and 
E I X -  iclY = 0 or elX = ie ly  

Ez5- i~Zy = 0 or eZs  = iezy. 

The  solution of (14) for such a case can be expressed in the form 

(19) 
(€12 + iE1y) = ( E 1 5 0  + i.l,O) exp( iPl+f)U + %O;lxOX1{1- exp( - 2 k I f ) )  

+ % T 0 ; 2 r O X 2 ( 1  - exp( - 2 M ) I  
where the expressions for X ,  and X ,  are given in the appendix. As the wave propagates 
large distances ( f  --f CO) in the medium, the ratio 0 of the non-linear to the linear part is 
given by 

0 = ~ ( E I X O ; l x O X 1  + E Z 5 0 2 ~ 5 0 X 2 ) '  (194 
Some numerical calculations have been carried out, on an IBM 1620 computer, to 

investigate the dependence of the magnitudes of X ,  and X ,  on the various relevant para- 
meters. 

Tables 1 and 2 show the variations in the magnitudes of X ,  and X ,  respectively, with 
the electron density and the electron collision frequency for s = 1, G = 1, w o  = w,, 
l?/kTo = 10, w2/wl  = 3 and for the case of gyro-resonance of the first wave ( w B  = wl). 
The figures written in the brackets, in all the tables given here, represent the variations of 
X ,  and X ,  with the various parameters in the absence of the non-linearity discussed in this 
paper, i.e. with (~LV,/~T,),~=~, in equation (1) equal to zero. The figures in table 1 
suggest that the magnitude of X ,  decreases with increasing electron density and electron 
collision frequency; the decrease in the magnitude of X ,  is greater with the increasing 
electron collision frequency than with increasing electron density. These figures further 
suggest that the magnitude of X, is always appreciably higher when the dependence of Ne 
on Te is taken into account than in the absence of this non-linearity. The  nature of the 
variation of X ,  with these parameters is parallel to that of X,, but the magnitude of X,, for 
the same parameters, is greater than the magnitude of X,. 

A 8  



98 B. K.  Sawhney 

Table 1. Variation of the magnitude of Xi with the electron density and 
electron collision frequency 

X I  for 
( W ~ / W O ) ~  V O / W ~  = 0.04 v ~ / w O  = 0.06 v O / W O  = 0.06 V J W O  = 0.10 v O / W O  = 0 4 2  

x 10-2 x10-2 x10-2 x 10-2 l o - ,  
8.9440 4.3225 2.6235 1.7904 1.3130 

(0.85 18) (0.4122) (052499) (0.1 705) (0.1250) 
84336 3.7950 2.2360 1.4952 1.0821 

(0 ~7746) (0.3 6 14) (0.2130) (0.1424) (04031) 
7.8651 3.6149 24009 1,3878 0.9938 

(0.7491) (0.3443) (0.2001) (0.1322) (0 .O 94.6) 
7,7318 3.5253 2.0334 1.3337 0,9488 

(0.7364) (0.33 5 8) (0.19 3 7 )  (0.1 270) (0.0904) 

0.2 

0.4 

0.6 

0.8 

U/kTo = IO, W ~ / W I  = 3 and w B  = w1. The figures in parentheses denote the variation 
of XI without taking into account the dependence of ili, on T,. 

Table 2. Variation of the magnitude of Xz with the electron density and 
electron collision frequency for oB = w1 

(Wr/Wo) '  V O / W ~  = 0.04 v O / W O  = 0.06 
~ 1 0 - 3  ~ 1 0 - 3  

24.8150 8.8135 
(5.2215) (1 .8 5 3 3) 
17.3460 6.2517 
(3.6501) (1 *3 146) 
13,9130 5,0333 
(2.9 276) (1.0584) 

11.8280 4.2833 
(2.4889) (0.9007) 

0.2 

0.4 

0.6 

0.8 

X ,  for 
V O / W O  = 0.08 1. 

~ 1 0 - 3  
4.1671 
(0.8755) 
3.0221 

(0,6349) 
2.4436 

2.0818 
(0.43 74) 

(0.5134) 

toiwo = 0.10 VOlWO = 0.12 
~ 1 0 - 3  ~ 1 0 - 3  

2.3172 1.4243 
(0.4863) (0.2985) 
1.7143 1.0762 

(0.3598) (0.2255) 
1.3930 0.8790 

(0.2923) (0.1842) 
1.1888 0.7515 

(0.249 5 )  (0.1575) 

Tables 3 and 4 illustrate the dependence of the magnitudes of X ,  and X ,  respectively on 
the electron density and the electron collision frequency, for the same parameters as in the 
above tables, for the general case w1 # wB # w ,  and for wB,/wo = 0.2, i.e. for a weak 
magnetic field. The  figures in table 3 show that the magnitude of X ,  decreases with an 
increase in the electron density and the electron collision frequency; the decrease in the 
magnitude of X I  is steeper with the increasing electron collision frequency than with the 
electron density. The magnitude of X,, as shown by the figures in table 4, decreases with 
increasing electron collision frequency, while it increases with an increase in the electron 
density. 

Table 3. Variation of the magnitude of Xi with the electron density and 
electron collision frequency 

X I  for 

x lO-a  x 1 0 - 2  x l o - z  x10-2 x10-z 
( w , * / w ~ ~ )  V O ~ W O  = 0.04 v O / W O  = 0.06 v O / W O  = 0.08 v O / W O  = 0.10 v O / W O  = 0.12 

16.01 50 7.1964 
(0.10 5 4) (0.0715) 
15.9740 7,1552 
(0.1051) (0.0711) 
15.6280 6.8230 
(0.1028) (0.0678) 
6.9552 3.0806 

(0.0458) (0.03 06) 

0.2 

0.4 

0.6 

0.8 

ws/wo = 0.2 (for w1 + w B  + 

4.1 101 
(0.0549) 
4.0679 

(0 .O 5 44.) 
3.7540 

1.7349 
(0.05 02) 

(0 0232) 

2.6820 
(0.045 3) 
2.6386 

(0.446) 
2.3449 
(0.0396) 
1.1167 

(0.0189) 

1.9067 
(0.03 9 2) 
1,8617 

(0 .O 3 8 2) 

(0.03 26) 

(0.0161) 

1,5892 

0.7836 
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Table 4. Variation of the magnitude of Xz with the electron density and 
electron collision frequency for wS/wo = 0.2 

0.2 

0.4 

0.6 

0.8 

)o/wo = 0.04 vo/w0 = 0.06 
~ 1 0 - 3  ~ 1 0 - 3  

6.6928 
(0.048 2) 
7,8448 

(0.0565) 
10.7490 
(0.0775) 
19.2310 
(0.1386) 

2.9305 
(0,031 9) 
3.4865 

(0.0379) 
4,7431 

(0.05 16) 
7.0054 

(0.0762) 

1.6395 
(0.0240) 
1.9738 

(0.0289) 
2.6584 

(0.0389) 
3.4349 

(0.050 2) 

1.0675 
(0 * 0 1 94) 
1.2824 

(0.02 3 7) 
1.6951 

(0.0313) 
1.9853 

(0.03 6 6) 

0.7535 
(0.0169) 
0.9063 

(0.0203) 
1.1718 

(0.026 2) 
1.2735 

(0.0285) 

T o  be able to appreciate the effect of this non-linearity (i.e. the dependence of Ne on T,) 
on the magnitude of the ratio 0 of the non-linear to the linear part in (19a), let us consider 
the following cases for 

To = 3000 “K, w0 = lo6 Hz, 
v cm-l ,  EliO = E2x0 = 4.4 x 

( O , / W ~ ) ~  = 0.6 and vo/wo = 0.10. 

(i) Considering the case when wB = w,  using (19a) and tables 1 and 2 we get 

0 = 0.1529 

in the presence of this non-linearity while 

0 = 0.0301 

when the dependence of - I T e  on T,  is not taken into account. 
(ii) For the case when w1 # wB # wz, one obtains, using (19a) and tables 3 and 4, 

0 = 0.1917 

(taking the dependence of Ne on T,  into account) and 

0 = 0,0035 

(when the dependence of Ne on T,  is neglected). 
This suggests that the contribution, due to this non-linearity, to the non-linear part of 

the amplitude of the wave, may be as much as about 207”. 
An expression for X ,  and X2, without the presence of a magnetic field in a plasma, can be 

obtained from those discussed above, for the case w1 # wB # w2, by putting wB = 0 and 
E,, = Epy = 0. Some numerical calculations for the magnitudes of X ,  and X ,  have been 
carried out for this case as well, but they have not been included here owing to lack of 
space. The  nature of the variation of X, and X 2  with the various parameters is similar to 
that brought out by the last two tables, but the relative magnitudes of X ,  and X2 are small 
compared to those for the case w1 # wB # w2. 
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Appendix 

case when the frequency of the first wave is equal to the gyrofrequency of electrons : 

x, = ___- exp(i#,) where tan$, = ~ 

The various coefficients of equation (19) are given by the following expressions, for the 

(w,/w0)"3{(3/4+ U/2kT,) -  1/2} 2kl 
3v'?7k1(?Z12 + 4k12)1i2 a1 

(y2  + 8')''' exp(i$,) %a - (kl+ U Y  z= (-1 vo = -  1 x, = - tan$, = 
4k2{fl12 + (k, + k,)2}1i2' n1y + ( k l +  k2P '  '\WO Y 

y = 12++H2(Y+Az)+iF2B2, 6 = J2-i-H2B2+$Fz(Y+A2) 
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